top of page
abstract-white-background-with-smooth-lines_476363-333_edited.jpg

                                                                          Diode

 

  A diode is a semiconductor device that allows current to flow in one direction while blocking it in the        opposite direction. The flow of current through a diode depends on its biasing (forward or reverse)

 

  1. Forward Current (IF_F)

     When the diode is forward-biased (the anode is more positive than the cathode), current flows               through it.

​

     Mechanism:

     1.Forward Biasing: o When a voltage is applied across the diode such that the p-type side (anode)                                          is positive and the n-type side (cathode) is negative, the depletion region at                                            the p-n junction narrows.       

                                   o This allows charge carriers (electrons from the n-side and holes from the p-                                              side) to move across the junction.

 

      2.Threshold Voltage (VT_T): o For current to flow significantly, the applied voltage must exceed the                                                         diode's threshold voltage.

                                                       For Silicon diodes, VT_T ≈ 0.7 V.

                                                      For Germanium diodes, VT_T ≈ 0.3 V.

 

      3.Current Flow:     o Once the threshold voltage is exceeded, current increases exponentially with                                          the applied voltage. This relationship is governed by the diode equation:                                                   I=IS(eqVkT−1)I = I_S \left( e^{\frac{qV}{kT}} - 1 \right)

                                       where: ISI_S = reverse saturation current (a small leakage current)

                                                   qq = charge of an electron (1.6×10−191.6 \times 10^{-19} C)

                                                   VV = applied voltage

                                                   kk = Boltzmann constant (1.38×10−231.38 \times 10^{-23} J/K)

                                                   TT = temperature in Kelvin.

 

          Characteristics:

                                   •Current increases rapidly with voltage beyond the threshold.

                                   •The diode exhibits low resistance in this mode.

 

    2. Reverse Current (IR_R)

        When the diode is reverse-biased (the cathode is more positive than the anode), a very small                 current flows through it, called reverse current or leakage current.

 

       Mechanism:

       1.Reverse Biasing: o The p-n junction widens, increasing the depletion region.

                                      o This prevents the majority carriers from crossing the junction.

   

       2.Reverse Saturation Current (ISI_S): o A small current flows due to the minority charge carriers                                                                           (holes in the n-region and electrons in the p-region).

                                                                     o ISI_S is temperature-dependent and increases with an                                                                              increase in temperature.

 

        3.Breakdown Region: o If the reverse voltage exceeds a critical value called the breakdown                                                          voltage (VB_B), the diode conducts large current in reverse.

                                             ï‚§Zener Breakdown: Occurs in Zener diodes at low reverse voltages due to                                                                              quantum tunnelling.

                                             Avalanche Breakdown: Happens at higher reverse voltages due to carrier                                                                                     multiplication.

 

          Characteristics:

                                          •Reverse current is very small compared to forward current.

                                          •The diode exhibits high resistance in this mode, except during                                                                  breakdown.

 

     3. Total Current in a Diode

 

         The net current through the diode is the sum of forward and reverse currents. Under normal                   operation, either forward or reverse current dominates based on the biasing.

 

        Key Points:

                           •Ideal Diode: In theory, current flows perfectly in one direction, with no                                                       leakage or resistance in forward bias and infinite resistance in reverse bias.

​

                           •Real Diode: Has small leakage current in reverse bias and a finite threshold voltage                                 in forward bias.

                           •Temperature Effect: Both forward and reverse currents increase with temperature due

                              to increased carrier activity.

 

         Applications:

                      •Rectifiers: Convert AC to DC.

                      •Voltage Regulators: Zener diodes maintain a stable voltage.             

                      •Clamping/Clipping Circuits: Shape or limit voltage waveforms.

                      •Switching: Used in digital circuits for high-speed operation.

 

        Vacuum Diodes

 

        A vacuum diode is an electronic device that consists of two electrodes (an anode and a cathode)         enclosed in a vacuum-sealed envelope. Its operation is based on the thermionic emission of                   electrons from the heated cathode, which are then attracted to the positively charged anode.

 

       1. Characteristic Curves of Vacuum Diodes

           The characteristic curve of a vacuum diode illustrates the relationship between the anode                       current (IAI_A) and the anode voltage (VAV_A).

 

        Regions of the Characteristic Curve:

        1.Saturation Region: o At low anode voltages, the anode current increases linearly with the anode                                              voltage.

                                         o Electrons emitted from the cathode are fully collected by the anode.

                                       

         2.Space-Charge Limited Region: o As the anode voltage increases, the current becomes limited                                                                     by the space charge created by electrons near the cathode.

                                                               o The anode current follows the Child-Langmuir Law:                                     IA=4ϵ092emVA3/2d2I_A = \frac{4 \epsilon_0}{9} \sqrt{\frac{2e} {m}} \frac{V_A^{3/2}}{d^2}

                   where: ϵ0\epsilon_0: Permittivity of free space

                               ee: Electron charge

                               mm: Electron mass

                               dd: Distance between cathode and anode

                                VAV_A: Anode voltage

​

          3.Thermionic Emission Limited Region: o At very high anode voltages, the current saturates                                                                                    because the cathode emits electrons at its maximum                                                                                rate, governed by the Richardson-Dushman equation:                                                                             J=AT2e−Ï•/kTJ = A T^2 e^{-\phi / kT}

                                                                           where: JJ: Current density

                                                                                       AA: Richardson constant

                                                                                      TT: Cathode temperature

                                                                                       Ï•\phi: Work function of the cathode material

                                                                                       kk: Boltzmann constant

 

 

       Planar Vacuum Diode

​

       In a planar vacuum diode, the cathode and anode are parallel plates separated by a vacuum. The         potential distribution in the diode is a key aspect of its operation.

​

       Potential Distribution:

      1.Vacuum Conditions: o The vacuum ensures no medium obstructs electron motion, except for the                                                space charge effect.

      2.Electron Emission and Acceleration: o Electrons are emitted thermionically from the cathode and                                                                        accelerate toward the anode due to the electric field.

       3.Space-Charge Effects: o The electron cloud near the cathode modifies the potential distribution.

                                               o The potential decreases non-linearly from the cathode to the anode to                                                      due the repulsion among electrons (space charge).

   

     Gas Diodes

     

     A gas diode is a type of electronic device that operates similarly to a vacuum diode but contains a         small amount of gas, such as argon, neon, or mercury vapor, instead of a complete vacuum. The           presence of gas significantly affects the operation of the diode, introducing new phenomena such           as ionization and gas discharge. These properties make gas diodes useful in applications like                 voltage regulation, rectification, and surge protection.

 

    1. Construction of Gas Diodes

       A typical gas diode consists of:

      •Cathode: The negative electrode, often made of a material that facilitates electron emission.

      •Anode:    The positive electrode.

      •Gas-filled envelope: A sealed chamber containing a small amount of inert gas or a gas mixture at                                          low pressure.The design is similar to a vacuum diode but with a gas-filled                                                environment, enabling ionization effects during operation.

 

      Gas Diodes operation

​

        The operation of a gas diode involves the interaction between electrons, gas atoms, and ions                  within the diode.

 

        Forward Bias: • When the anode is positive relative to the cathode:

                               o Electrons are emitted from the cathode and accelerated toward the anode.

                               o The gas in the diode becomes ionized as high-energy electrons collide with gas                                      atoms.

                               o Ionization creates positive ions and free electrons, which contribute to the                                                conduction process.

         Reverse Bias:•When the anode is negative relative to the cathode:

                               o Very little current flows because the electric field repels the electrons emitted by                                      the cathode.

                               o In reverse bias, gas diodes exhibit high resistance until the reverse breakdown                                        voltage is reached.

 

         Applications of Gas Diodes

​

        1.Voltage Regulation: o Gas diodes are used in voltage regulators because of their stable                           breakdown voltage.

           o Example: Neon lamps and gas-filled Zener diodes.

​

         2.Surge Protection:  o Gas diodes protect electronic circuits from voltage spikes by conducting                                                    large currents during overvoltage conditions.

           o Example: Gas discharge tubes in power line protection.

       

         3.Rectification: o Used in high-power rectifiers for converting AC to DC in industrial                                                             applications.

     

         4.Indicators: o Neon lamps, which are a form of gas diodes, are widely used as visual indicators                                    in electrical circuits.

 

         Characteristics of Gas Diodes

​

             The current-voltage (I−VI-V) characteristics of gas diodes differ significantly from those of                        vacuum diodes:

 

         1.Non-linear Behaviour : o Below the breakdown voltage, the diode exhibits high resistance.

                                                o After breakdown, the current increases rapidly, often with a visible glow                                                    discharge.

 

         2.Stable Breakdown Voltage: o The breakdown voltage is relatively stable, depending on the type                                                            of gas and pressure.

 

         3.Negative Resistance: o Seen in the I−VI-V curve after breakdown.

 

        4.Thermal Effects: o Conducting ionized gas generates heat, which can affect performance and                                               requires heat dissipation mechanisms.

 

        6. Advantages of Gas Diodes

           •High breakdown voltage.

           •Stable operation in high-voltage applications.

           •Low cost and simple construction.

           •Visible glow discharge for operational indication.

 

        7. Disadvantages of Gas Diodes

          •Slower response time compared to solid-state diodes.

          •Limited to low-frequency applications.

          •Susceptible to aging effects, as gas ionization may degrade over time.

 

        8. Common Examples

            1.Neon Lamps: Used for indication and voltage stabilization.

            2.Gas Discharge Tubes (GDTs): Used for surge protection.

            3.Mercury Arc Rectifiers: Used in industrial power conversion.

 

     Crystal Diodes

​

     A crystal diode is a semiconductor device that allows current to flow in one direction while blocking         it in the opposite direction. It is a fundamental component of electronic circuits and is also known as       a p-n junction diode. Crystal diodes are widely used in rectification, signal processing, and voltage         regulation. Crystal diodes form the backbone of modern electronics, enabling key functionalities in         circuits ranging from power supplies to high-speed communication systems. Their simplicity,                   reliability, and efficiency make them indispensable components.

 

     1. Construction of a Crystal Diode

 

     1.P-N Junction: o A crystal diode is made by joining p-type (positively charged holes as majority               carriers) and n-type (negatively charged electrons as majority carriers) semiconductor materials.

     

     2.Crystal Structure: o The materials are typically silicon or germanium, which have a crystalline                                                  lattice structure.

                                     o Silicon diodes are more common due to their higher thermal stability and                                                lower leakage current compared to germanium diodes.

 

      3.Terminals: o Anode (P-side): Connected to the positive terminal in forward bias.

                           o Cathode (N-side): Connected to the negative terminal in forward bias.

 

     4.Encapsulation: o The diode is enclosed in a small, protective casing with leads for external                                                connections.

 

     2. Working Principle of a Crystal Diode

         The operation of a crystal diode depends on the behavior of the p-n junction under forward and               reverse bias conditions.

 

         Forward Bias:•When the p-side is connected to the positive terminal and the n-side to the                                               negative terminal:

                                1.The depletion region at the junction narrows, reducing the potential barrier.                                            2.Electrons from the n-side and holes from the p-side move across the junction.

                                3.A current flows through the diode due to the recombination of charge carriers.

         Reverse Bias:•When the p-side is connected to the negative terminal and the n-side to the                                             positive terminal:

                                1.The depletion region widens, increasing the potential barrier.

                                2.Majority carriers are blocked, and only a small leakage current flows due to                                             minority carriers.

                                3.If the reverse voltage exceeds a critical value (breakdown voltage), a large                                               reverse current flows, possibly damaging the diode.

 

       3. Characteristics of Crystal Diodes

           The current-voltage (I−VI-V) characteristics of a crystal diode are non-linear and can be divided             into three regions:

           1.Forward Bias Region: o Current increases exponentially with voltage once the threshold                                                                voltage is exceeded.

                                                  Silicon diode: Threshold voltage ≈ 0.7 V.

                                                  Germanium diode: Threshold voltage ≈ 0.3 V.

           2.Reverse Bias Region: o A small reverse leakage current flows until the breakdown voltage is                                                        reached.

           3.Breakdown Region:    o At high reverse voltages, the diode conducts heavily due to                                                                      breakdown mechanisms:

                                                  Zener Breakdown: Quantum tunneling in heavily doped diodes.

                                                  Avalanche Breakdown: Carrier multiplication in lightly doped diodes.

​

      4. Applications of Crystal Diodes

        1.Rectification :o Converts AC to DC in power supply circuits (e.g., half-wave and full-wave                                                 rectifiers).

        2.Clipping and Clamping Circuits: o Used to limit voltage levels or shift signal baselines.

        3.Voltage Regulation: o Zener diodes are specialized crystal diodes for maintaining stable                                                            voltages.

       4.Signal Demodulation: o Used in radio receivers to extract audio signals from modulated carrier                                                     waves.

        5.Switching: o Acts as a fast electronic switch in digital circuits.

 

     5. Types of Crystal Diodes

 

        1.Silicon Diodes:              o High thermal stability.

                                                o Low leakage current.

                                                o High forward voltage drop (~0.7 V).

        2.Germanium Diodes:     o Lower forward voltage drop (~0.3 V).

                                                o Higher leakage current .

                                                o Less thermally stable.

        3.Schottky Diodes:          o Formed using a metal-semiconductor junction.

                                                o Very fast switching speed and low forward voltage drop ).

        4.Zener Diodes:               o Designed to operate in reverse breakdown for voltage regulation.

        5.Light Emitting Diodes :  o Emit light when forward biased due to electron-hole                                                                                  recombination.

 

      6. Advantages of Crystal Diodes

         •Small size and lightweight.

         •High efficiency and reliability.

         •Fast response times for switching.

         •Operates over a wide range of voltages and currents.

 

     7.  Disadvantages of Crystal Diodes

         •Limited voltage and current handling capacity.

         •Susceptible to damage from overheating or overvoltage.

         •Non-linear characteristics require careful circuit design.

 

      Junction Diode

​

      A junction diode is a semiconductor device that consists of a single p-n junction formed by doping          a single piece of semiconductor material. It allows current to flow in one direction (forward bias)              and blocks it in the other (reverse bias). The junction diode is the simplest form of a diode and is            widely used in electronic circuits for rectification, switching, and signal processing. The junction              diode is a vital semiconductor device that allows unidirectional current flow and exhibits distinct              forward and reverse bias behaviors.

 

      1. Construction of a Junction Diode

         A junction diode is constructed from a semiconductor material, such as silicon or germanium.                 The construction involves two regions:

​

         1.P-Type Region: o Contains an abundance of holes (positive charge carriers) created by adding               trivalent impurities (e.g., boron).

​

         2.N-Type Region: o Contains an abundance of electrons (negative charge carriers) created by                  adding pentavalent impurities (e.g., phosphorus).

 

         3.P-N Junction: o The interface where the p-type and n-type regions meet.

                                   o At the junction, electrons and holes diffuse across the boundary, leading to the                                        formation of a depletion region.

 

        4.Depletion Region: o A region around the p-n junction that is devoid of free charge carriers due                                               to recombination.

                                         o Contains immobile ions, creating an electric field and a potential barrier.

 

          2. Working Principle of a Junction Diode

             The operation of a junction diode depends on the biasing conditions:

             Forward Bias:•The p-side is connected to the positive terminal, and the n-side to the negative                                         terminal of an external voltage source.

                                   •The applied voltage reduces the potential barrier at the p-n junction.

                                   •When the applied voltage exceeds the threshold voltage (VTV_T):

                                   o Silicon diode: VT≈0.7 VV_T ≈ 0.7 \, \text{V}.

                                   o Germanium diode: VT≈0.3 VV_T ≈ 0.3 \, \text{V}.

                                   •Charge carriers (electrons and holes) flow across the junction, resulting in a                                            current.

​

             Reverse Bias:•The p-side is connected to the negative terminal, and the n-side to the positive                                       terminal.

                                   •The applied voltage increases the width of the depletion region and the                                                    potential barrier.

                                   •Only a small leakage current flows due to minority carriers.

                                   •If the reverse voltage exceeds the breakdown voltage (VBV_B), the diode                                                 conducts heavily (breakdown).

 

          3. I-V Characteristics of a Junction Diode

 

              The current-voltage (I−VI-V) characteristics of a junction diode are non-linear and can be                        divided into:

              1.Forward Bias Region: o Below the threshold voltage: Current is negligible.

                                                    o Beyond the threshold voltage: Current increases exponentially.

              2.Reverse Bias Region: o Small reverse leakage current flows until breakdown voltage.

                                                    o At breakdown voltage (VBV_B):

                                                      Zener Breakdown: In heavily doped diodes at low reverse voltages.

                                                       Avalanche Breakdown: In lightly doped diodes at high reverse                                                                   voltages.

 

           4. Applications of Junction Diodes

 

              1.Rectification: o Converts AC to DC in power supplies (half-wave and full-wave rectifiers).

              2.Clipping and Clamping Circuits: o Shapes waveforms by limiting or shifting voltage levels.

              3.Voltage Regulation: o Zener diodes (specialized junction diodes) maintain a stable voltage.

              4.Signal Demodulation :o Extracts audio signals from modulated carrier waves.

              5.Switching: o Acts as a fast on/off switch in digital circuits.

​

          5. Types of Junction Diodes

             1.Standard Diode: o Used in rectification and basic switching.

             2.Zener Diode: o Operates in reverse breakdown for voltage regulation.

             3.Schottky Diode: o Fast switching diode with a metal-semiconductor junction.

             4.LED (Light Emitting Diode):o Emits light when forward-biased.

             5.Photodiode: o Generates current when exposed to light (used in sensors).

 

            6. Advantages of Junction Diodes

              •Simple construction and operation.

              •High efficiency and reliability.

              •Wide range of applications in electronics.

              •Small size and cost-effective.

 

            7. Limitations of Junction Diodes

             •Current flows in only one direction.

             •Limited voltage and current handling capacity.

             •Susceptible to damage due to overheating or overvoltage

footer for home page for engineering study material, notes and sample question paper
Tell us

Thanks for sharing your feedback with us!

  • Instagram
  • YouTube
bottom of page